
J. AppZ. Maths Mechs, Vol. 55, No. 3, pp. 390-396, 1991 0021-8928/91 $15.00+0.00 
Printed in Great Britain 01992 Pergamon Press Ltd 

SLOWLY VARYING HIGH-FREQUENCY STRESS-STRAIN STATES IN IMMERSED SHELLS* 

YU.D. KAPLUNQV 

The asymptotic integration method is used to derive two-dimensional 
equations that describe, near the cutoff frequency, the slowly varying 
component of the stress-strain state of a thin elastic shell immersed in 
an infinite compressible liquid. The effect of the fluid on different 
types of high-frequency, long-wave vibrations of the shell is 
established. Applications of the equations to hydroacoustic problems 
are discussed for the case of a circular cylindrical shell. 

The asymptotic integration method has been previously used to derive two-dimensional 
equations describing slowly varying high-frequency stress-strain states in an elastic layer 
superimposed on an acoustic half-space /l, 2/ and in a "dry" shell (without contact with a 
liquid) /3/. Slowly varying high-frequency stress-strain states in dry plates and shells are 
studied by the variational approach in /4, 5/. 

1. Basic relationships. Consider a closed convex thin elastic shell immersed in an 
infinite compressible liquid which performs harmonic oscillations of the form @I'_ The 
radius-vector of a point in three-dimensional space is represented as the sum 

where M (al, 0~~) is the radius-vector of the points of the shell middle surface, n is the 
unit normal vector to the shell and cc3 is the distance along the normal from the midsurface. 
We assume that the midsurface is related to the lines of curvature and the vector equality 
(1.1) accordingly defines a triorthogonal coordinate system. 

We will write out the basic relationships of the problem using the following notation: 
d ,,,,, and uI (m, n, k = 1, 2, 3) are the stresses and the displacements of the elastic medium 
forming the shell, 'p is the liquid displacement potential, Qk*(k =I, 2,3) are the loads 
applied to the shell faces, 2h is the shell thickness: R,, R, and R, respectively, are the 
principal radii of curvature and the characteristic radius of curvature of the shell midsurface, 
E is Young's modulus, Y is Possion's ratio, C, and c2 are the velocities of propagation of 
shear waves and compressional-dilatational wavesintheshell material, cO is the velocity of 
sound in the liquid and PO? P, respectively, are the density of the liquid and of the shell 
material. 

The dynamic equations of elasticity theory in the region -h,< cc3 < h filled by the 
shell are written in the form 

H;-'Ui;, i + Hj-‘aij, 1 + Ga,s + (H,Hj)-‘Hj, 5 (~ii - Ujj) + (I.9 
2 (H,Hj)-‘Hi, iu<j + (2Hi-‘Hi, 8 + Hj-‘H,, 3) (I,, f PO’L’z = 0 

H,-‘u,~,< + H~-‘o’,,,, + U33,3 - H~-'H~,,u,< - Hj-'Hj.,Ujj f 

(HiHj)-1[(HiHI),SO~3 + Hi, <usi + Hi, 103/l f PW", = 0 

U,, = 2E* [PI (vs.3 + Hj-‘Uj, 1 + H<-‘H,-lHj, iui + Hj-‘HI, 3~3) + 
(1 + flJH;-’ (UC i + Hi. 3~3 + Hj-‘Hi, Pj)l 

u - 2E* [PI (H[‘v<, i + Hj-‘uj, j + Hi-IHj-‘Hj, ~IJ, + H+-‘Hj-‘Hi, juj + 53 - 
H+-‘fli, 503 f HI-‘Hj, 3~3) + (1 + PIjuz.31 

u,, = E, (Hi-‘u,, i + ui, s - H,-‘Hi. 3vi) 

O<j = E, IHj-‘u,, j + H,-‘~j, i - (HiHj)-‘(Hi, jVi + IIj% <uj)l 

Hi = Ai (1 + a,/Ri), i, j = 1, 2; i # j; p1 = v/(1 - 2~) 

E, =:‘/,E/(l + v), f, k = dflikz,, 1~ = 1, 2, 3 

Here Ai are the coefficients of the first quadratic form of the midsurface. 
The oscillations of the liquid in the region exterior to the shell a,>/~ are described 

by the Helmholtz equation 
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As’p + (02/coe)q = 0 (1.3) 

where A, is the three-dimensional Laplace operator. The boundary conditions on the shell 
faces have the form 

(1.4) 

The potential rp is required to satisfy the radiation condition 

acp/aIPI-~((~/c,)cp=o(IPI-‘) as IPI-+,=== (1.5) 

We will assume that the relative shell half-thickness n = h/R and the relative liquid 
impedance E = cOp,/(c,p) are small parameters. The relationship between these parameters is 
taken in the form 

e = $Eo (t > 0, Eg - 11") (1.6) 

We will consider the frequency range in which 

oR/c, = q-‘p (p - q”) 

Let us stretch the scale of the independent variables in (1.2) by the formulas 

(1.7) 

CQ = Rq’Ei, CZ~ = Rq5 (1.8) 

Here q is the exponent of variability of the required stress-strain state by the variables 
ai (i = 1, 2); we assume that differentiation with respect to the variables &, 5 does not 
change the order of the original variables. 

Consider the stress-strain (SSS) of a shell with exponent of variability q(1, which 
in the range (1.7) will be called slowly varying high-frequency stress-strain states (SV HF 
SSS). We will show that SV HF SSS occur in narrow neighbourhoods of the cutoff frequencies 
and that two types of such SSS exist. Type 1 SSS correspond to quasitransverse oscillations 
of the shell when v,>u, (i = i,Z) and type 2 SSS correspond to quasitangential oscillations 
for which conversely vi>vvs. We accordingly expect that the effect of the liquid on the 
oscillations of the shell depends on the type of SSS considered. 

Before proceeding to study SV HF SSS, we will apply assumptions (1.6)-(1.8) to express 
the potential cp in the force boundary condition on the contact surface in terms of the par- 
ameters of the shell SSS. 

2. Asymptotic representation of the pressure of the liquid on the shell. Let us first' 
consider an auxiliary Dirichlet problem for the Helmholtz Eq.(1.3) in the region a,> h with 
the boundary condition 

cp (a,, oz, A) = $ (a~ a,) (2.1) 

and radiation condition (1.5) at infinity. In (2.11, II, (al7 a*) is a given function such 
that Rr%p18ai - q-%j (i = 1, 2; g ( 1). 

Let us derive an asymptotic representation of the solution of this problem in a thin 
layer of the liquid of width y = a,lh -1 -q” near the wall. The displacement potential is 
specified in the form 

'P = exp (ic~y)[cp, (al, 02) + m'pl (aI, a,) + 0 W*)l, c = c,lco 

Substituting (2.2) into (1.3) and (2.1), we obtain 

'PO =$, '~1 = ---'I& (f/R, + l/R,) 

(2.2) 

(2.3) 

This result enables us to express the pressure of the liquid on the shell in the third 
boundary condition in (1.4) in terms of the normal displacement of the shell face. Indeed, 
substituting the representation (2.2) into the imperviousness condition (the last condition 
in (1.4)) and using relationships (2.3), we obtain 

‘P (a,, apt h) = _ ih”8 (=;;arv h, 

The term with the multiplier r\ in the bracketed expression represents the effect of shell 
curvature. We shall see in what follows that this effect may be quite substantial in some 
cases for q< ril. The presence of this term distinguishes the representation (2.4) from the 
common hydroacoustic approximation obtained in the framework of the piston theory*. 

*Gol'denveizer A.L. and Radovinskii A.L., Asymptotic Analysis of Oscillations and Radiation 
of a Shell in a Liquid, Preprint 275, Moscow, Akad. Nauk SSSR, Inst. Probl. Mekhan., 1986. 
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3. ~~~~ equations of type 1 SV HP SSS. SV HF SSS observed near the cutoff 
frequencies A = nml(2f)) ($ = caicl = [(I - 2v)/(2 - Zv))'J*, m E N, m - qo) will be called type 1 
SV HF SSS. The frequencies A are the eigenfrequencies of the compressional-dilatational 
modes of a transverse fibre in a dry shell. The neighbourhoods of these frequencies are 
defined by the asymptotic relationship. 

p-A- nb (b > 0) (3.1) 
where b is the deviation exponent. 

Let us examine the properties of these SSS for free oscillations (Qkf = 0 (k = 1, 2, 3)). 
We define their asymptotic behaviour in the form 

rQ = hu,, okx = EASER; 0% * hq’-%+, 06s = E*$%a. @sf = -@~9a-2q%j (3.2) 

Here and below we assume that the dimensionless quantities nK, skrr sis. sij (i, i = 1, 2; d #i; ft = 
1% 2,3), are of the same asymptotic order. The existence of SSS with asymptotic behaviour 
(3.2) in the neighbourhoods 13.1) of the cutoff frequencies h will be proved as follows. 

Let us derive approximate two-dimensional equations (independent of the transverse 
coordinate 6) which describe type 1 SV HF SSS in an immersed shell. We will first sinplify 
Eqs.fl.2) and the boundary conditions 11.4) (using (2.4)) by dividing the required SSS into 
symmetric and antisymmetric components relative to the shell midsurface. The shell displace- 
ments can accordingly be represented in the form of a sum 

nit = ftko + tfkE1, s = min (2, t) (3.3) 

The variables with the superscript 0 relate to the asymptotically principal symmetric 
(antisynunetric) SSS component, and the variables with the superscript 1 relate to the 
asymptotically secondary antisymmetric (symmetric) component. We assume that nka, ukl are 
of the same asymptotic order. The representation (3.3) is made possible by the structure of 
the relationships (1.21, (1.4), (1.6), 12.4) and will be justified below. 

Let us now substitute formulas (1.6)-(1.8), 12.4), (3.21, (3.3) into (1.2), (1.4). We 
will express the stresses in terms of displacements and omit the terms which are ignorable 
in the first approximation for constructing the final two-dimensional equations. Using the 
fact that gko, ukl are even (odd) with respect to 6, we obtain, after some reduction, the 
system of equations 

(3.4) 

with the boundary conditions for % = 1 

(3.5) 

Here i, and i, are the unit vectors of the orthogonal system of coordinates chosen on the 
midsurface. All the differential operators occurring in (3.41, (3.5) act on the shell mid- 
surface. 

Let us consider the case when the SSS defined by nk" is antisymmetric with respect to 
6. Then in (3.1) m = 2n, n E N. From the second equation in (3.4) we obtain the represen- 
tation 

us0 = w (%I, %,) oes @lb: + Il'nsro (E,, E,, 5) (3.6) 

where w (II, %3 and u~,*(%~~ %*, 5) are unknown functions. Substituting expression 13.6) into 
(3.4) and in the first and third boundary conditions in (3.5), we obtain with error 0 (q'+nb) 

(3.7) 
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Using formulas (3.7), we can show that all the quantities in relationships (3.21, (3.3) 
are of the same asymptotic order. For t> 1 they reduce with an additional error 0 (P) 
to the corresponding formulas for a dry shell /3/. 

We substitute (3.7) into the second boundary condition (3.5). Collecting similar terms 
anddroppingasymptotically secondary quantities, we obtain 

~~-*Q"*Au, + [~%"a* $ '/,i& + '/&+'epl ((AC)-' - i) + 
(p - A)lw + OIq4-44 + h’ + $)(d + rlv = 0 

4 tg A 
T*=&-T, T~*=-~[Xa(3--~1)+~x,a(l+Bl)l 

(3.8) 

The transformations applied in deriving the two-dimensional Eq.(3.8) hold when T* - 11’. 
If this condition is not satisfied, additional analysis is required /2/. Note that in 
addition to the term O($) we retain also the term 0 (rl'+') in (3.8). The imaginary part 
of the term O(gl+') obviously can be omitted to a first approximation compared with the 
purely imaginary term 0 (4, The real part of the term O(VJ~+~), however, may have a 
significant effect in some problems. An appropriate example is given in Sect.5. 

Let us change in Eq.(3.8) to the original dimensional coordinates ai on the shell mid- 
surface, using the notation ~~,a(~,,a,)= hw(a,,a,). Omitting the O-term, we write 

TAv,'+[Ta+~ie+teh(~-t~)(~--i)+(~-n)]~;,~=u 

T =lz2T*, Tn=-$[(I-&)(+++~-)+~] eWW& 

If E = 0, then (3.9) reduces to the equation describing the SV HF SSS of a dry shell 
/3/. The case when the displacements uk" define a symmetric SSS (relative to the shell mid- 
surface) is analysed similarly. Eq.(3.9) remains applicable, apart from the replacement of 
tg with -ctg in the expression for the coefficient T and n with n - 'iz in the expression 
for A. 

In the case of forced oscillations, the right-hand side of Eq.(3'.9) acquires an additional 
term which represents the action of the forces on the shell faces. It is identical with the 
corresponding term for the dry shell and has the form 

2 (-I)“+% 
1)3=& ~ 

Fa = ‘1, @a+ T Q<)/E*r Qs = ‘I’, (Qs’ 2 Q;)iE, 

Fj = '12 (0; + Qj-)/E,, j = 1, 2, F, = F,i, + F,i, 

(3.10) 

The upper (lower) signs and upper (lower) expressions in braces in (3.10) correspond to the 
case when the asymptotically principal component of the shell SSS is antisymmetric (symmetric) 
relative to the shell midsurface. 

4. Tkw-clGnensGnat equat5ons of type 2 SV HP SSS. Type 2 SV HF SSS are observed in the 
neighbourhoods (3.1) of the cutoff frequencies A = nmi2 (m E N, m - rf’), which are the 
eigenfrequencies of the shear modes of a transverse fibre in the shell. The asymptotic 
behaviour of these SSS is given by 

vi = hu,, us = h+us (4.1) 

uis = E+sis; crkk = Ee+-‘bkk, ui, = E,+%<j 

The partition of the shell displacements into symmetric and antisymmetric components 
relative to the midsurface is defined in this case by the relationships 

U, = uiO + +i', uQ = uao + $L~~, s1 = min (1, 2 - 2q + t) (4.2) 

Substituting (1.6)-(1.8), (2.4), (4.1), and (4.2) into (1.2), (1.4) and using the same algebra 
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as in Sect.3, we obtain the system of equations 

a2~,o/a~2 + pzpz~30 + (2 - 2~)-' div &,o/ac + 0 (v$-*~) = 0 

a%Q/ap + p2~ro + q2-29 [(I - 2~)-l grad (au,Opj + div uro) + AuToI - 
q*(xl~,u,~ + x,gau,ojag) + ql+w,au,ya5 + c(pq+h) = u 

a2u,l/a;z + pU,l + q~-9guTyaj + 0 (pwq = 0 

Ljur = Rj (R,-'u,i, + H2-j&), j = 1, 2 

with the boundary conditions for 5 = 1 

(4.3) 

(4.4) 

Let us examine the case when the SSS defined by uko (k = 1,2,3) is antisymmetric with 
respect to 5. The expression for the cutoff frequencies takes the form A = */,n (n - 'i,) (n Cz 
N, n - 11”). From the second equation in (4.3). we obtain 

uTo = Ip(6, %Jsin p5 + 9*-2quIoT (EP E1, 5) (4.5) 

where 4 (&, %J, u,,' (%,, %*, 5)' are unknown vectors. 
Substituting expression (4.5) into (4.3) and into the first and third boundary conditions 

in (4.4), we obtain 

ugo = y [cosA& *(2 sin h-_&&3 ctgPA)]+ (4.6) 

0 (V24 + rlzs + rib) 
u: = - ~'-~~g [(L, + l/,xl)A-l COR AC + '/,x,~ sin Ajl f- 

0 (r12-?4++~' ;. $1) 

urrO = 
A$ccosAc - grad~s,,BAz (2sinA- i$E,$ctg($A)+ 

+&,l+x,l( cOsA: T+csinAc 
) 
f O(ll-24 + +r + $) 

Substituting (4.6) into the second boundary condition of (4.4) and omitting asymptotically 
secondary terms, we obtain a two-dimensional system of equations for $, 

$-*q [v~A-~A$ + (B* + i&B,*)grad div gl + h@~* ?- (p - (4.7) 

Let us change back to the original coordinates in the system of Eqs.(4.7), putting 
vra (a,, aa) = hip (al, az). Omitting the O-term, we obtain 

$-A"%'+ (B+ ~.&)grad divv," + [Ba +($-A)] v,'= 0 

B = h2B* , B, = hZB,*, BRv~~=-~i[~(~+~)+~~Jv~a+ 

+(&+$)(~i,+-$i,)+-$il+$-iz} 

(4.8) 

All the remarks made regarding Eq.(3.9) are equally applicable to Eq.(4.8). The two- 
dimensional system of equations for the case when the displacements ukO define a symmetric 
SSS relative to the shell midsurface are obtained from (4.8) by replacing ctgpA with -tgfiA 
in the expressions for B and B, and n - '1, with n in the expression for A. In the case of 
forced oscillations, the right-hand side of (4.8) should contain the vector 

p, =-I_ (--1)“h r[F,++(&++)+ 4heydF8 {_;;DBn^}]l (4.9) 

oj = l/z(Q,+TQj-)/E,, j = I,2, Q, = @,i, + W, 
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All the quantities in (4.9) and the rules for choosing the signs and the expressions in 
braces are the same as in (3.10). The expression for the external force vector (4.9) is 
identical with the corresponding expression for a dry shell. 

5. A circular cylindrical shell. Let us discuss some qualitative features of SV HF SSS 
for the case of a circular cylindrical shell, when R1=m,Ra= R, and Eqs.(3.9) and (4.8) 
have constant coefficients. Let us consider type 1 SSS in more detail. We will seek 
particular solutions of (3.9) in the form 

usa = exp [iR_' (Z,a, + l&)1 (5.4) 

where 1, and 4 characterize the variability of the SSS along the midsurface coordinate lines. 
Substituting (5.1) into Eq.(3.9), we obtain 

(5.2) 

Let ll-?*, where QI 0 = 4, 2) I respectively, are the exponents of variability in the 
direction of the longitudinal axis and the circumference of the cylinder. 

We will first consider the case when I, has to be determined given the oscillation 
frequency o and the parameter 4 characterizing the circumferential distribution of the 
solution. This formulation corresponds, for instance, to the problem of the forced oscil- 
lations of an immersed cylindrical shell under the action of an a,-concentrated annular load 
with la waves along the circumference /6/. Taking relationships (1.6) and (3.1) into account 
and using (5.2), we obtain 

q1 = max (qs, 1 - ‘lab, 1 - list) (5.3) 

A number of important conclusions follow from (5.3). First, we can ignore the third term 
on the right-hand side of (5.2) with an error not exceeding 0 (rl), i.e., the piston theory 
may be used in this case to allow for the effect of the liquid. Second, if at least one of 
the three inequalities qa>0,b<2,t<2 is satisfied, then with an error 0 (?') we can 
ignore the first term on the right-hand side of formula (5.2) which determines the dependence 
of the solution on the exterior geometry of the cylinder (the principal radius of curvature). 

Let us now determine the position of the real part of the In-th eigenfrequency for the 
plane problem (I, = 0). This information is of interest for problems in scattering theory /7/. 
From Eq.(5.2) we have 

(5.4) 

To fix our ideas we will assume that t= 1 in (1.8), i.e., e-n. Then the residual 
term in Eq. (3.8) is of order 0 [q2-2qz (I) + ~2-2'Jz)]. The asymptotic formula (5.4) and the last 
estimate are identical with the results of /7/. For 4r>8, we can ignore the terms o(Il*) 
on the right-hand side of (5.4), because the corresponding correction is asymptotically small 
compared with the distance between neighbouring resonances, which is of the order of 0 (ll2-4.). 

A similar analysis can be conducted for type 2 SV HF SSS. Without going into detail, 
we will merely note that unlike the previous case, when the imaginary term corresponding to 
the damping of the liquid was independent of the resonance index and had the constant order 

0 (e), the order of this term for type 2 SSS is 0 (e?j==). 
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STATIONARY ~UAS~TRANSVERSE SIMPLE AND SHOCK WAVES IN A 

WEAKLY ANISOTROPIC NON-LINEAR EtASTIC MEDIUM* 

A.P. CHUGAINOVA 

Two-dimensional stationary simple and shock waves in a weakly 
anisotropic non-linear elastic medium are considered under the same 
assumptions as in /l-6/, which studied one-dimensional non-stationary 
simple and shock waves in a prestrained non-linear elastic medium. 

The standard analysis of stationary simple and shock waves 17-91 in the 
~agnetohydrodyna~ics of a gas with a frozen magnetic field essentially corresponds to a 
special case of an anisotropic elastic medium. Particular plane selfsimilar boundary-value 
problems of shock wave reflection from the boundary of an isotropic non-linear elastic 
half-space were solved numerically in 19, lo/. 

1. Equations describing the behaviour of tao-dSmelu;ional. stationary simple Waves. A 
weakly anisotropic non-linear elastic medium is defined by the elastic potential /l/ 

CD = pou (IQ,, pIk) . . ., . . ., S), 
1 

“if = -j- atl, -f- arl, + q + 
i 

awi aw, 1 
Here lJ is the internal energy of the medium, S is the entropy per unit mass, slj are the 

components of Green's strain tensor, p,, is the density in the unstressed state, pi!.). are 
tensors specifyinq the deviation of the eediun from an isotropic medium, n+ is the displace- 
ment vector and ni are the Lagrangian coordinates (Cartesian right coordinates in the un- 
stressed state); here and henceforth, i,j, k = 1, 2, 3. 

The system of three equations of motion in Lagrangian Cartesian variables has the form 

*i a aQ, 
POata = atl, a(auJ,/aq,) (1.1) 

and is of hyperbolic type. 
We introduce a moving system of coordinates f;l, fe, $8 in which the notion of the system 

is steady. 

where W is a given vector of sufficiently large absolute value. The angle (r defines the 
direction of the vector W relative to the axes n,, n2, %. 

Let 
aw&& = l*, ~Wi/~~~ = m*, aw,iay;, = ai 

We assume that &, mi, ai are functions of the two variables %, and &. Therefore, we 
see from the equalities 
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